非奇异矩阵提示您:看后求收藏(范秘书小说fanmishu.com),接着再看更方便。
“一百年前,愚蠢的人们曾用‘通灵’这个词来解释椋鸟群令人惊异的协调能力,直到一个叫雷诺的聪明人发明出一种叫做‘自组织’的算法,用计算机模拟出了与鸟群类似的运动轨迹。
他假设鸟群中的每只鸟只需获取自己局部的环境的信息,并根据这些信息自行决定自己下个时刻的运动状态。每只鸟每个时刻都要遵守三条规则:避免与附近的其它成员碰撞、飞行方向与附近邻居的平均飞行方向一致、不要落单。
这个算法的最大特点是整个的运动群体没有中心的指挥者,而群体却能够找到对整个种群最有利的飞行路线。它们可以据此躲避捕食者、保暖、迁徙,没有一个个体会受到伤害。
这种智能的状态恰好处在“有序”与“无序”之间,类似于相变的临界点处,此时,一个群体既能保持其稳定性,又能保证个体的信息在群体中有效地传递。
你不觉得,这很适合我们现在的状况吗?”
克里斯汀在赛格兰炽热的目光中沉默了许久,才缓缓开口:“我不明白。人作为智慧生物,似乎并不需要这种原始的技巧。”
赛格兰眯着眼睛,一脸意味深长,“这不是什么原始的技巧,而是一种我们从未拥有过的群体智慧。
与‘自组织’理论同时诞生的,还有一个名为‘合唱团’的假说。一个名为波茨的聪明人,分析鸟群的飞行录像时发现,单只鸟在转向时的反应时间很短。远短于群体运动状态通过局部相互作用向个体传递的时间。
也就是说,在群体转向之前,所有个体都已经得知自己即将转向,并为此做出了充足的准备。鸟群的单只鸟时刻都能获得鸟群的整体信息,这是一种长距离的关联。
比方说,鸟群中有两只距离遥远的鸟A和b,A在鸟群的外围,b则位于鸟群的内侧,两只鸟距离太远,互相看不到对方,它们之间不存在直接的相互作用,但它们的运动依然能相互影响,这被称作‘长程关联’。
这很神奇不是吗?
这种临界状态既稳定,又可塑。更令人振奋的是,在人的大脑皮层中,不同区域之间神经信号发放之间的关联也是长程的。我们的大脑也处于同样的临界状态,这种巧妙的平衡也许是智慧的重要来源。
正如一旦受到微小环境扰动的鸟群那样,这种临界状态是十分敏感的。儿时的你在画册上看过一眼狮子的照片,你就可以在第一次去动物园时立刻认出狮子,正是因为这种敏感性。机器区分猫和狗需要用成千上万的图片来训练,而你只需一眼。
这就是人类智能独有的优势。”
“所以你想研究椋鸟的这种特性,强化人的大脑,让人变得更聪明?”克里斯汀一头雾水,他从来都无法猜透眼前这个科学怪人的心思,这一次也同样如此。
赛格兰展现出一幅洞察一切的神情,“不,我想让每个人都变成椋鸟,集合本就聪慧的脑子,形成一个真正的群体,表现出更高数量级的集体智慧,从而结束无用的竞争与内耗。
这样,安东尼奥就不会再出现在我们的玉米肉汤里。”
深夜,赛格兰依然对着他的电脑忙碌。
虽然没有顺利拿到椋鸟,但他并不为此沮丧,因为他的基因库里还有鸽子和其它一些有迁徙能力的鸟种。
虽然其它鸟群没有展现出和椋鸟一样强的自组织特性,但它们依然有价值,因为它们可以感知磁场。
它们可以在戈林德伯恩或亨利镇消暑,享受自己的英格兰夏日,然后在温暖的蒙巴萨岛过冬。它们可以潇洒地穿梭于两极之间,过着永远有光亮的生活。
它们可以依靠微弱的地磁场来为导航,也可以对特定波段的电磁波作出反应。
这是因为它们的视网膜中,存在一种名为隐花色素(tryptochrome,cry)的蛋白质,隐花色素蛋白吸收了光子,进入光激活状态,会形成一种对磁敏感的化学中间体,与黄素腺嘌呤二核苷酸(FAd)结合后的产物,可以提示自身与地球磁场的相对方向。
还有研究指出,出cry蛋白磁感应机制源于其内部电子行为:在蓝光激发后,FAd会发生还原反应,电子在cry蛋白中trpA、trpb、trpc、trpd四个保守色氨酸(tryptophan,trp)之间进行跳跃,这种电子跳跃对磁场高度敏感,并且同时承担了“磁感应”和“信号传递”两种不同的功能。
虽然大范围定向改变磁场很难,但鉴于磁场的本质是对电场的相对论变换,随时间变化的电场和磁场还可以互相耦合,以电磁波的形式传播于空间,他还是有机会的。
想到这里,他不禁慷慨激昂。
如果他需要依赖什么才能把那些罪恶的人当作提线木偶来操纵,那么cry蛋白就是绝佳的线绳。
如果一定需要一个人来作为新时代的造物主,去洗刷掉人类身上的所有瑕疵,他并不介意那是他自己。